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The Searching Problem

¡ Like sorting, searching is one of the most useful applications in computer science. 
¡ The problem is usually to retrieve an entire record based on the value of some key 

field. 
¡ Recall the phonebook example in Lecture 1.

¡ In this lecture:
¡ We analyze the searching problem and show that we have obtained searching algorithms whose 

time complexities are about as good as our lower bounds. 

¡ We discuss the data structures used by the algorithms and to discuss when a data structure 
satisfies the needs of a particular application. 
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LOWER BOUNDS FOR THE SEARCHING PROBLEM
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Lower Bounds for the Search Problem

¡ The searching problem is that given an array 𝑆 containing 𝑛 keys and a key 𝑥:
¡ Find an index 𝑖 such that 𝑥 = 𝑆[𝑖] if 𝑥 equals one of the keys.

¡ If 𝑥 does not equal one of the keys, report failure. 

¡ Binary Search is very efficient for solving this problem when the array is sorted. 
¡ Recall that its worst-case time complexity is lg 𝑛 + 1. 

¡ Can we improve on this performance? 

¡ As long as we limit ourselves to algorithms that search only by comparisons of keys, 
such an improvement is not possible. 
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Lower Bounds for the Search Problem

Theorem 1
Any deterministic algorithm that searches for a key 𝑥 in an array of 𝑛 distinct keys only by comparisons of 
keys must in the worst case do at least 

lg 𝑛 + 1 comparisons of keys.

Theorem 2
Among deterministic algorithms that search for a key 𝑥 in an array of 𝑛 distinct keys only by comparison 
of keys, Binary Search is optimal in its average-case performance if we assume that 𝑥 is in the array and 
that all array slots are equally probable. Therefore, under these assumptions, any such algorithm must 
on the average do at least approximately 

lg 𝑛 − 1 comparisons of keys.
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Lower Bounds for the Search Problem

¡ We established that Binary Search is optimal in its average-case performance given 
specific assumptions about the probability distribution. 

¡ For other probability distributions, it may not be optimal. 
¡ For example, if it is known that the probability was 0.9999 that 𝑥 equaled 𝑆[10], it would be 

optimal to compare 𝑥 with 𝑆[10] first.

¡ Recall the situation and solution for optimal binary search tree.
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INTERPOLATION SEARCH
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Use Extra Information for Searching

¡ The bounds just obtained are for algorithms that rely only on comparisons of keys. 
¡ We can improve on these bounds if we use some other information to assist in our search. 

¡ Recall that you can more than just compare keys to find Lisa Barber’s number in the 
phone book. 
¡ You don’t start in the middle of the phone book, because you know that the B’s are near the front. 

¡ Your “interpolate” and starts near the front. 
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Interpolation Search

¡ Suppose we are searching 10 integers, and we know that: 
¡ The first integer ranges from 0 to 9.
¡ The second integer ranges from 10 to 19.
¡ The third integer ranges from 20 to 29.

¡ …
¡ The tenth from 90 to 99. 

¡ Then we can immediately report failure if the search key 𝑥 is less than 0 or greater than 99. 
¡ If neither of these is the case, we need only compare 𝑥 with 𝑆[1 + 𝑥/10 ].

¡ For example, we would compare 𝑥 = 25 with 𝑆[1 + 25/10 ] = 𝑆[3].
¡ If they were not equal, we would report failure. 
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Interpolation Search

¡ We usually do not have this much information. 
¡ However, in some applications it is reasonable to assume that the keys are close to 

being evenly distributed between the first one and the last one. 
¡ If you know it, you can use it to accelerate searching.

¡ In such cases, instead of checking whether 𝑥 equals the middle key, we can check 
whether 𝑥 equals the key that is located about where we would expect to find 𝑥. 
¡ For example, if we think 10 keys are close to being evenly distributed from 0 to 99, we would 

expect to find 𝑥 = 25 about in the third position, and we would compare 𝑥 first with 𝑆[3] instead 
of 𝑆[5]. 
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Interpolation Search

¡ The algorithm that implements this strategy is called Interpolation Search. 

¡ We use linear interpolation to determine approximately where we feel 𝑥 should be 
located:

𝑚𝑖𝑑 = 𝑙𝑜𝑤 +
𝑥 − 𝑆[𝑙𝑜𝑤]

𝑆 ℎ𝑖𝑔ℎ − 𝑆[𝑙𝑜𝑤]
×(ℎ𝑖𝑔ℎ − 𝑙𝑜𝑤) .

¡ For example, if 𝑆[1] = 4 and 𝑆[10] = 97, and we were searching for 𝑥 = 25, 𝑚𝑖𝑑 = 1 +
!"#$
%&#$

×(10 − 1) = 3.
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Pseudocode for Interpolation Search

¡ It can be shown that the average-case 
time complexity of Interpolation 
Search is given by 

𝐴 𝑛 ≈ lg lg 𝑛 .

¡ If 𝑛 equals one billion (10!"), lg lg 𝑛
is about 5, whereas lg 𝑛 is about 30.
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Drawback

¡ A drawback of Interpolation Search is its worst-case performance. 

¡ Suppose again that there are 10 keys and their values are 1, 2, 3, 4, 5, 6, 7, 8, 9, and 100. 
¡ We say that the keys are close to being evenly distributed, not exactly.

¡ If 𝑥 = 10, 𝑚𝑖𝑑 would repeatedly be set to 𝑙𝑜𝑤, and 𝑥 would be compared with every key. 

¡ At the beginning 𝑚𝑖𝑑 = 1 + !"#!
!""#!

×(10 − 1) = 1. Then it is increased one by one.

¡ In the worst case, Interpolation Search degenerates to a sequential search. 
¡ The average-case time complexity of Interpolation Search is good, how can we improve the worst-case?
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Robust Interpolation Search

¡ A variation of Interpolation Search called Robust Interpolation Search remedies this situation by 
establishing a variable 𝑔𝑎𝑝 such that 𝑚𝑖𝑑 − 𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ − 𝑚𝑖𝑑 are always greater than 𝑔𝑎𝑝.
¡ The idea is simply to make 𝑚𝑖𝑑 not too close to 𝑙𝑜𝑤 or ℎ𝑖𝑔ℎ, which leads to sequential search.

¡ Initially we set 

𝑔𝑎𝑝 = ℎ𝑖𝑔ℎ − 𝑙𝑜𝑤 + 1 '/! .
¡ And we compute 𝑚𝑖𝑑 using the previous formula for linear interpolation. After that computation, the 

value of 𝑚𝑖𝑑 is updated with the following computation: 
𝑚𝑖𝑑 = min(ℎ𝑖𝑔ℎ − 𝑔𝑎𝑝,max(𝑚𝑖𝑑, 𝑙𝑜𝑤 + 𝑔𝑎𝑝)) .

¡ For the previous example, 𝑔𝑎𝑝 = 3, 𝑚𝑖𝑑 is initialized as 1, and updated to 
min(10 − 3,max(1,1 + 3)) = 4.
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Robust Interpolation Search

¡ Under the assumptions that the keys are uniformly distributed and that the search 
key 𝑥 is equally likely to be in each of the array slots, the average-case time 
complexity for Robust Interpolation Search is in Θ(lg(lg 𝑛)).

¡ Its worst-case time complexity is in Θ lg 𝑛 # , which is worse than Binary Search but 
much better than Interpolation Search.
¡ We keep the same average-case time complexity but improve the worst-case time complexity.
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SEARCHING IN TREES
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Search Trees

¡ Even though Binary Search and its variations, Interpolation Search and Robust 
Interpolation Search, are very efficient, they cannot be used in many applications 
because an array is not an appropriate structure for storing the data in these 
applications. 

¡ Then we show that a tree is appropriate for these applications. 

¡ Furthermore, we show that we have Θ(lg 𝑛) algorithms for searching trees. 
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Static and Dynamic Searching

¡ By static searching we mean a process in which the records are all added to the file 
at one time and there is no need to add or delete records later. 
¡ An example of a situation is the searching done by operating systems commands. 

¡ Many applications, however, require dynamic searching, which means that records 
are frequently added and deleted. 
¡ An airline reservation system is an application that requires dynamic searching, because customers 

frequently call to schedule and cancel reservations.
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Static and Dynamic Searching

¡ An array structure is inappropriate for dynamic searching, because when we add a 
record in sequence to a sorted array, we must move all the records following the 
added record. 

¡ Although we can readily add and delete records using a linked list, there is no 
efficient way to search a linked list. 
¡ You can’t use index to access nodes in a linked list.

¡ Dynamic searching can be implemented efficiently using a tree structure. 
¡ First we discuss binary search trees. After that, we discuss B-trees, which are an improvement on 

binary search trees. B-trees are guaranteed to remain balanced.
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Binary Search Tree

¡ We have used dynamic programming to solve the problem of optimal binary search 
tree when keys have different probabilities.

¡ However, the purpose there was to discuss a static searching application. 
¡ The algorithm that builds the tree requires that all the keys be added at one time.

¡ After creation of the optimal binary search tree, we will use it for a while without changing it.
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Binary Search Tree and Binary Search

¡ Recall that the keys are ordered by an in-order traversal of a binary tree.
¡ Traverse the tree by first visiting all the nodes in the left subtree, then visiting the root, and finally 

visiting all the nodes in the right subtree. 

¡ When we search a key in a search tree, we actually do the same sequence of 
comparisons as done by Binary Search. 
¡ Therefore, like Binary Search, searching in a search tree is optimal for searching 𝑛 keys when the 

tree is balanced. 
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Skewed Tree

¡ The drawback of binary search trees is that when keys are 
dynamically added and deleted, there is no guarantee that the 
resulting tree will be balanced. 
¡ For example, if the keys are all added in increasing sequence, we obtain 

the tree in the figure. 

¡ This tree, which is called a skewed tree, is simply a linked list. 
¡ Search any key to this tree results in a sequential search. 

¡ In this case, we have gained nothing by using a binary search tree instead 
of a linked list. 
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A skewed tree

Image source: Figure 8.6, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014



Average Search Time

¡ If the keys are added at random, intuitively it seems that the resulting tree will be closer to a 
balanced tree much more often than it will be closer to a linked list. 
¡ Bad luck happens rarely. For most of the time, we face to the case that is neither good luck (balanced 

tree) nor bad luck (skewed tree).

Theorem 3
Under the assumptions that all inputs are equally probable and that the search key 𝑥 is equally 
probable to be any of the 𝑛 keys, the average search time over all inputs containing 𝑛 distinct 
keys, using binary search trees, is given approximately by 

𝐴 𝑛 ≈ 1.38 lg 𝑛 .
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Balance Search Tree

¡ To solve the problem of skewed tree, one solution is to write a balancing program 
that takes as input an existing binary search tree and outputs a balanced binary 
search tree containing the same keys. 

¡ The program is then run periodically. 

¡ The optimal binary search tree by dynamic programming is an algorithm for such a 
program. 
¡ That algorithm is more powerful than a simple balancing algorithm because it is able to consider 

the probability of each key being the search key. 
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Balance Search Tree

¡ The the data amount is huge, periodically rebuilding the whole tree is time-
consuming.

¡ In a very dynamic environment, it would be better if the tree never became skewed 
in the first place. 

¡ Such balanced binary tree is called AVL tree, in which a binary tree is maintained 
balanced when adding and deleting nodes.
¡ The insertion and deletion times for these algorithms are guaranteed to be Θ(lg 𝑛), as is the 

search time. 

¡ Transfer the computation to insertion and deletion from searching in the worst-case.
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B-Tree

¡ Another solution to maintain balanced binary search tree is B-tree.

¡ A B-tree 𝑇 is a rooted tree (whose root is 𝑟𝑜𝑜𝑡[𝑇]) with the following properties:
¡ Every node 𝑠 has the following fields:

¡ 𝑛[𝑠]: the number of keys currently stored in node 𝑠.

¡ The 𝑛[𝑠] keys themselves, stored in nondecreasing order, so that 
𝑘𝑒𝑦'[𝑠] £ 𝑘𝑒𝑦![𝑠] £ … £ 𝑘𝑒𝑦)[+][𝑠]

¡ Each internal node 𝑠 also contains 𝑛[𝑠] + 1 pointers 𝑐'[𝑠], 𝑐![𝑠], … , 𝑐) + -'[𝑠] to its children.
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B-Tree

¡ The keys 𝑘𝑒𝑦.[𝑠] separate the ranges of keys stored in each 
subtree: if 𝑥. is any key stored in the subtree with root 𝑐𝑖[𝑠], then

𝑥1 £ 𝑘𝑒𝑦1[𝑠] £ 𝑥2 £ 𝑘𝑒𝑦2[𝑠] £ … £ 𝑘𝑒𝑦) + [𝑠] £ 𝑘) + -'

¡ In this figure:
¡ For the root: 𝑘𝑒𝑦# 𝑟𝑜𝑜𝑡 = 10, 𝑘𝑒𝑦$ 𝑟𝑜𝑜𝑡 = 15.

¡ For each subtree with root:

¡ 𝑘𝑒𝑦! 𝑐! 𝑟𝑜𝑜𝑡 = 5.

¡ 𝑘𝑒𝑦! 𝑐" 𝑟𝑜𝑜𝑡 = 13.

¡ 𝑘𝑒𝑦! 𝑐# 𝑟𝑜𝑜𝑡 = 17, 𝑘𝑒𝑦" 𝑐# 𝑟𝑜𝑜𝑡 = 20, 𝑘𝑒𝑦# 𝑐# 𝑟𝑜𝑜𝑡 = 30.
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Image source: Figure 8.7, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014



B-Tree

¡ In a B-tree, all leaves have the same depth, which is the tree’s height ℎ.
¡ There are lower and upper bounds on the number of keys a node can contain:

¡ 𝑡: minimum degree of the B-tree.

¡ Every node other than the root must have at least 𝑡 − 1 keys (i.e., a non-root 
internal node must have at least 𝑡 children).

¡ Every node can contain at most 2𝑡 − 1 keys (i.e., an internal node can have at 
most 2𝑡 children).

¡ We say that a node is full if it contains exactly 2𝑡 − 1 keys.
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An Example of B-Tree

¡ Search begins at root, and key comparisons direct it to a leaf.

¡ For example, if the search key is 20, it will compare 13, 17, 24, 19, 20.

29

Root

17 24

2 3 5 14 16 19 20 22 26 27 29

13

A B-tree with degree 𝑡 = 2



Key Inserting for B-Tree

¡ Step 1: If the root is full, split the root and a node containing the middle key becomes 
the new root.

¡ Step 2: Direct to the subtree where the search key should be. Suppose the node 𝑠 is 
the root of the subtree we are pointing to.
¡ If 𝑠 is full, must split 𝑠. Redistribute entries evenly, and move up middle key.

¡ If 𝑠 is a leaf, then insert a key into 𝑠. Done! Otherwise, go to Step 2.
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Example of Key Inserting for B-Tree
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¡ We are going to insert the key 8.

¡ We check the root with Step 1.
¡ The root is full, split it.

2

Root

14 16 19 20 22 26 27 293 5

1713 24

pointer



Example of Key Inserting for B-Tree
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Root

17

2413

2 14 16 19 20 22 26 27 293 5

¡ After split the root, we go to 
Step 2.

¡ Now, the node is neither full, 
nor a leaf.

¡ We go to Step 2 again.

pointer



Example of Key Inserting for B-Tree
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Root

17

2413

2 14 16 19 20 22 26 27 293 5

¡ Now, the node is full.
¡ Split the node, redistribute entries 

evenly, and move up middle key.

pointer



Example of Key Inserting for B-Tree

¡ Now, the node is a leaf.
¡ Insert 8. Done!

34

2

Root
17

24

14 16 19 20 22 26 27 29

133

5 8

pointer



Example of Key Inserting for B-Tree

¡ Summary of key inserting for B-tree:
whenever you visit a node, check if it is full 
first, if yes, split.

¡ Time complexity for insertion: 𝑂(lg 𝑛).
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Another example with degree 𝑡 = 3



Key Deletion for B-Tree

36

Key deletion example with degree 𝑡 = 3

¡ Case 1: If the key 𝑥 is in node 𝑠 that has at least 𝑡
keys and 𝑠 is a leaf, delete the key 𝑥 from 𝑠.

¡ Case 2: If the key 𝑥 is in node 𝑠 and 𝑠 is an internal 
node, do the following
¡ Case 2a: If the child 𝑝 that precedes 𝑥 in node 𝑠 has at 

least 𝑡 keys, then find the predecessor 𝑥’ of 𝑥 in the 
subtree rooted at 𝑝. Recursively delete 𝑥’, and replace 𝑥
by 𝑥’ in 𝑠.

¡ Case 2b: Symmetrically, if the child 𝑞 that follows 𝑥 in 
node 𝑠 has at least 𝑡 keys, then find the successor 𝑥’ of 𝑥
in the subtree rooted at 𝑞. Recursively delete 𝑥’, and 
replace 𝑥 by 𝑥’ in 𝑠.

¡ Case 2c: Otherwise, if both 𝑝 and 𝑞 have only 𝑡 − 1 keys, 
merge 𝑥 and all of 𝑞 into 𝑝, so that 𝑠 loses both 𝑥 and the 
pointer to 𝑞, and 𝑝 now contains 2𝑡 − 1 keys. Then, free 𝑞
and recursively delete 𝑥 from 𝑝.



Key Deletion for B-Tree
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Key deletion example with degree 𝑡 = 3

¡ Case 3: If the key 𝑥 is not present in internal node 𝑠, determine the 
root 𝑐%[𝑠] of the appropriate subtree that must contain 𝑥, if 𝑥 is in 
the tree at all. If 𝑐%[𝑠] has only 𝑡 − 1 keys, execute Case 3a or 3b as 
necessary to guarantee that we descend to a node containing at 
least 𝑡 keys. Then, finish by recursing on the appropriate child of 𝑠.
¡ Case 3a: If 𝑐%[𝑠] has only 𝑡 − 1 keys but has an immediate sibling 

with at least 𝑡 keys, give 𝑐%[𝑠] an extra key by moving a key from 
𝑠 down into 𝑐%[𝑠], moving a key from 𝑐%[𝑠]’s immediate left or 
right sibling up into 𝑠, and moving the appropriate child pointer 
from the sibling into 𝑐%[𝑠].

¡ Case 3b: If 𝑐%[𝑠] and both of 𝑐%[𝑠]’s immediate siblings have 𝑡 − 1
keys, merge 𝑐%[𝑠] with one sibling, which involves moving a key 
from 𝑠 down into the new merged node to become the median 
key for that node.



Example of Key Deletion for B-Tree

¡ Show the results of deleting H, L, T and G, in order, from the B-tree below with degree 𝑡 = 3. 

¡ Delete H (case 2b):
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E H L

A  C F G N  O Q  R  S U  V Y  Z

T     X

I J K

P

E I L

A  C F G N  O Q  R  S U  V Y  Z

T     X

J K

PCase 2b: Symmetrically, if 
the child 𝑞 that follows 𝑥 in 
node 𝑠 has at least 𝑡 keys, 
then find the successor 𝑥’
of 𝑥 in the subtree rooted 
at 𝑞. Recursively delete 𝑥’, 
and replace 𝑥 by 𝑥’ in 𝑠.



Example of Key Deletion for B-Tree

¡ Delete L (case 2c):

¡ Delete T (case 3b then case 2a):
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E I

A  C F G Q  R  S U  V Y  Z

T     X

J K N O

P

E I P T X

A  C F G Q  R S U  V Y  ZJ K N O

E I P S X

A  C F G Q  R U  V Y  ZJ K N O

Case 2c: Otherwise, if both 𝑝 and 
𝑞 have only 𝑡 − 1 keys, merge 𝑥
and all of 𝑞 into 𝑝, so that 𝑠 loses 
both 𝑥 and the pointer to 𝑞, and 
𝑝 now contains 2𝑡 − 1 keys. 
Then, free 𝑞 and recursively 
delete 𝑥 from 𝑝.

Case 3b: If 𝑐![𝑠] and both of 
𝑐![𝑠]’s immediate siblings have 
𝑡 − 1 keys, merge 𝑐![𝑠] with 
one sibling, which involves 
moving a key from 𝑠 down into 
the new merged node to 
become the median key for 
that node.

Case 2a: If the child 𝑝 that 
precedes 𝑥 in node 𝑠 has 
at least 𝑡 keys, then find 
the predecessor 𝑥’ of 𝑥 in 
the subtree rooted at 𝑝. 
Recursively delete 𝑥’, and 
replace 𝑥 by 𝑥’ in 𝑠.



Example of Key Deletion for B-Tree

¡ Delete G (case 3a):

40

E J P S X

A  C F I Q  R U  V Y  ZK N O

Case 3a: If 𝑐![𝑠] has only 𝑡 − 1
keys but has an immediate 
sibling with at least 𝑡 keys, 
give 𝑐![𝑠] an extra key by 
moving a key from 𝑠 down 
into 𝑐![𝑠], moving a key from 
𝑐![𝑠]’s immediate left or right 
sibling up into 𝑠, and moving 
the appropriate child pointer 
from the sibling into 𝑐![𝑠].



Key Deletion for B-Tree

¡ The actual checking order:
¡ Case 3 (before reaching the node where the key is): make sure the root of the subtree containing 

at least 𝑡 keys.

¡ Case 2 (reaching the internal node where the key is): move one key up or merge.

¡ Case 1 (reaching the leaf where the key is): directly delete.

¡ Time complexity for deletion: 𝑂(lg 𝑛).
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THE SELECTION PROBLEM
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The Selection Problem

¡ So far we’ve discussed searching for a key 𝑥 in a list of 𝑛 keys. 

¡ Next we address a different searching problem called the selection problem. 

¡ This problem is to find the 𝑘th-largest (or 𝑘th-smallest) key in a list of 𝑛 keys. 

¡ We assume that the keys are in an unsorted array (the problem is trivial for a sorted 
array). 
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The Selection Problem

¡ One way to find the 𝑘th-smallest key in Θ(𝑛 lg 𝑛) time is to sort the keys and return 
the 𝑘th key. 

¡ We develop a method call Quickselect that requires fewer comparisons.
¡ Recall that procedure partition in Quicksort partitions an array so that all keys 

smaller than some pivot item come before it in the array and all keys larger than that 
pivot item come after it. 

¡ The slot at which the pivot item is located is called the pivotpoint. 
¡ We can solve the Selection problem by partitioning until the pivot item is at the 𝑘th 

slot. 

44



Quickselect

¡ We do this by recursively 
partitioning :
¡ the left subarray if 𝑘 is less 

than pivotpoint,

¡ the right subarray if 𝑘 is 
greater than pivotpoint. 

¡ When 𝑘 is equal to
pivotpoint, we’re done. 
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Worst-Case Time Complexity

¡ As in Quicksort, the worst case occurs when the input to the recursive call is 𝑛 − 1.

¡ This happens, for example, when the array is sorted in increasing order and 𝑘 = 𝑛. 

¡ Quickselect therefore has the same worst-case time complexity as Quicksort:

𝑊 𝑛 =
𝑛 𝑛 − 1

2
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Average-Case Time Complexity

¡ It can be shown that the average-case time complexity of Quickselect is:
𝐴 𝑛 ≈ 3𝑛.

¡ On the average, Quickselect does only a linear number of comparisons. 
¡ The reason is that Quicksort has two calls to partition, whereas Quickselect has only one. 

47



Improve Worst-Case Performance

¡ Similar to Quicksort, the worst-case time complexity of Quickselect can be improved 
by:
¡ Median-of-3 pivot.

¡ Random pivot.
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Conclusion

After this lecture, you should know:
¡ What is the lower bound for the search problem if we only compare keys.

¡ What is the condition to use and how to use interpolation search.

¡ Why do we need B-tree.

¡ How does insertion and deletion of B-tree work.

¡ How to solve the selection problem in linear time.
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Assignment

¡ No tutorial this week. Just implementing Quickselect in Python and submit to 
Attendance Quiz. You may try to evaluate whether Quickselect has linear time 
complexity.

¡ Assignment 5 is released. The deadline is 18:00, 29th June.
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Thank you!

¡ Any question?

¡ Don’t hesitate to send email to me for asking questions and discussion. J
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